

G.O.A.T.S. Flight Readiness Review March 20th

Team Members

Officers:

Team Captain: Caroline Kuhnle Director of System Integration: Krystina Waters Rocket Lead: Krystina Waters Safety Officer: Christian Max Shrader Payload Lead: Peter Dentch Logistics Officer: Jacob Koslow Funding Officer: Christopher Renfro Outreach Officer: Ian Scott **General Members: Kirsten Bowers** Drake Tierney Troy Otter James Kajon Samantha Crepeau Sophie Balkind Gracie Lodge-McIntire Sophiya Litovchick **Benjamin Waid Daniel Weber Adrianne Curtis** Veronika Karshina Minh-Chau Doan Thierry de Crespigny Trevor Shrady Lannan Jiang Jeremiah Valero

Acronyms

cal - caliber CG - Center of Gravity **CP** - Center of Pressure CTI - Cesaroni Technology Inc. dB - Decibels DC - Direct Current ft -Feet g - Grams GPS - Global Positioning System in - inches kg - Kilogram lb - Pounds lbf - Pound-Force

N - Newtons NASA - National Aeronautics and Space Administration **PPE - Personal Protective** Equipment RF - Radio Frequency s - Seconds SGA - Student Government Association UAV - Unmanned Aerial Vehicle V - Volts WPI - Worcester Polytechnic Institute

Mission Statement

Through using The National Aeronautics and Space Administration's (NASA) design lifecycle, we aim to gain real world experience about working in the field of engineering and encourage our members and team to excel through Worcester Polytechnic Institute's (WPI) philosophy of collaborative learning.

Vehicle Design

Overview of Rocket Dimensions

- Rocket Weight: 11.935 kg
- Motor: Cesaroni Technology Inc. L 730-0
 Alternate: Cesaroni Technology Inc. L1030-RL
- Airframe: 6 in x 92 in, .074 in Blue Tube 2.0
- 4 Fins: 13.76 in long x ~7.33in radially
- Full Rocket Length: 125in'
- Nose Cone:
 - Nose Length: **31.5 in**
 - Shoulder Length: 7.13 in
- Distance between center of pressure (CP) and Center of Gravity (CG): **19.81 in**
- Stability: 3.36 cal

CG

CP

USLI

Component Number	Component Name			Component
1	Nose Cone	Component	Component Name	Number
2	Nose Cone Shock Cord	Number	-	10
3	Nose Cone Parachute	6	Main Parachute	11
4	Dayload Detention	7	Main Shock Cord	
-	System	8	Electronics Bay	12
5	Shock Cord	9	Drogue Parachute	13

4 Fins

Motor Tube

Centering Rings (Plywood)

Drogue Shock Cord

7

Component Name

Fin Properties

- Rounded shape, carbon fiber
- Aerodynamically better
- Fin Dimensions
- Through the wall

Units are in inches unless otherwise specified

Nose Cone Properties

- Fiberglass
- Metal Tip
- Lands separately with own parachute

Final Secondary Motor Selection

Motor: L1030-RL

G.O.A.T.S. Full Scale Flight Simulation Using L1030-RL

Vertical motion vs. time

- Manufacturer: CTI
- Class: 9% L
- Avg. thrust: 1,028.5 N
- Thrust duration: 2.70s
- Total Impulse: 2,781.2 Ns
- Weight: 2,338.0 g

Final Primary Motor Selection

Motor: L730-0

Manufacturer: CTI

Class: 8% L

Avg. thrust: 732.9 N

Thrust duration: 3.77 s

Total Impulse: 2763.2 Ns

Weight: 2,247.0g

Plugged Seconds

Rocket Flight Stability in Static Margin Diagram **Static Stability Margin Diagram** Custom

 $\cup S$

Stability Values, Thrust-to-weight Ratio and Rail Exit Velocity

Static Stability Margin (on pad): 2.00 cal

Static Stability Margin (at rail exit): 3.36 cal

Thrust-to-weight Ratio: 6.46:1

Rail Exit Velocity: 85.3 ft/s

CG: 81.187 in

Predicted Drift from Launch Pad

<u>Wind Speed:</u>	<u>Section 1 (Main</u> <u>Tethered Section):</u>	Section 2
0 mph:	O ft	
5 mph	710 ft	
10 mph:	1420 ft	1
15 mph:	2130 ft	2
20 mph:	2840 ft	2

2 (Nose Cone): 0 ft 689 ft 1378 ft 2067 ft

2756 ft

Mass Statement and Mass Margin - Upper

- Gross Lift Off Weight
- Motor Mass Before Burn
- Nose Cone Mass
- Upper Airframe Mass
 - Inner Tube
 - Main Parachute
 - Payload
 - Nose Cone Parachute
 - Nose Cone Shock Cord
 - 2 Shock Cords

25.47 lb

435 g

4.95 lb

1346 g **300 g** 243 g 1056 g 47.2 g

11.6 g

456 g (228g each)

Mass Statement and Mass Margin - Lower

- **Electronics Bay**
- Tube coupler 200 g
- Lower Airframe Mass 1354 g
 - 5 Centering Rings
 - Fin set
 - Drogue Parachute
 - Inner Tube
 - Shock cord

Total Mass Total Weighted Mass 29.3 g

29.3 g 1750 g 47.2 g 232 g 228 g

11.601 kg 11.935 kg

Recovery System

Vehicle Flight Plan

• Apogee: **4683 ft**

USL

• Goal Apogee: 4500 ft

- Charges go off at **700 ft**
- Dual Deployment System

 Nose Cone will land separately from UAV, Lower and Upper Airframes

Full Scale Flight Simulation

Custom

USLI

Full Scale Flight Simulation Data

Motor Configuration:	L730-0
Velocity off Rod:	85.3 ft/s
Apogee:	4683 ft
Optimum delay:	13 s
Max Velocity:	605 ft/s
Max Acceleration:	307 ft/s^2
Flight time:	107 s
Decent time:	90.2 s
Ground Hit Velocity:	26.8 ft/s

Recovery System

Recovery System

- Current Parachute Diameters • Main Parachute: 72 in
 - Drogue Parachute: 36 in \bigcirc
 - Nose Cone Parachute: 36 in
- Shock Cord
 - Material: Tubular Nylon
 - Length: \bigcirc
 - Main Parachute: 137.55 in
 - Drogue Parachute: 138.45 in

Via http://spherachutes.com/

Electronics Bay

Electronics Bay Wiring

Component name

Raven 3 Altimeters

Rotary Switches

9V batteries

Main Parachute Charges

Apogee Charges

Electronics Bay Components

- Raven 3 Altimeter 9V
 - To log the altitude of the rocket

- GPS NEO-6MV2
 - Used to track the upper airframe, lower airframe, payload, and nose cone

 Micro SD card and Breakout Board Data from gyroscope and accelerometer logged here Ο

• MPU-6050

• A combined gyroscope and accelerometer

Electronics Bay Components

Adafruit RFM95W LoRa 915MHz Radio Transceiver
 Receives and sends transmissions from base station

- Arduino Nano
 - Receives data from GPS and sends it to the RF Transceiver

Nine Volt Battery
 o Power supply

Parachute size, length,

Main parachute

- Ripstop nylon with elastic cord shroud \bigcirc lines
- Diameter: 72 in \bigcirc
- Recovery harness Ο
 - Type: 1 in tubular nylon shock cord
 - Length: 137.55 in
- Descent rate \bigcirc
 - Velocity at deployment: 63.95 ft/s
 - Terminal velocity: 24.629 ft/s

Drogue parachute

- Ripstop nylon with elastic cord shroud Ο lines
- Diameter: 36 in \bigcirc
- Recovery harness Ο
 - Type: 1 in tubular nylon shock cord
 - Length: 138.45 in
- Descent rate
 - Velocity at deployment: 0
 - Terminal velocity: 63.95 ft/s

Parachute size, length, cont.

Nose Cone Parachute

- Ripstop nylon with elastic cord shroud lines
- Diameter: 36 in
- Recovery harness
 - Type: 1 in tubular nylon shock cord
 - Length: 138.45 in
- Descent rate
 - Velocity at deployment: 0
 - Terminal velocity: 63.95 ft/s

28

Kinetic Energy at Landing

Section 1 Payload Retention:

18.772 lbf*ft

Section 2 Nose Cone:

39.479 lbf*ft

Section 3 Lower Airframe:

74.857 lbf*ft

Section 4 Upper Airframe:

56.838 lbf*ft

US

Payload

Retention System Design

- Unfolding inner tube retention system housed within the rocket airframe
- Orients itself upright from any initial landing configuration to deploy the UAV

Final Payload Design

Units are in inches unless otherwise specified

Quadrotor UAV

- Total weight of about 632 g
- Maximum thrust to weight ratio of 4 to 1
- 10 minute maximum flight time
- 6 in diameter and 4.5 in pitch propellers
- 3DR Pixhawk mini with GPS module and Holybro telemetry system for real time data logging and monitoring

Payload Electrical system

- 2 cell LiPo battery with DC-DC converter to regulate 6V output to the Arduino Nano and linear servos
- Constantly listens for the ground station signaling it to unfold and power on the UAV
- Contact pads on the lowest plate of the UAV and the retention system base allow the relay coil to be energized to power it on

UAV arm locking mechanism

- Attached to each UAV arm, allows folded up launch vehicle flight configuration and transition to UAV flight configuration
- Driven down by torsion springs and pulled into place by neodymium magnets
- Lock like a buckle, prevent UAV arms from moving during its flight
- Prototype print pictured on this slide

Integration with launch vehicle

- Blue Tube inner tube divided into 4 sections
- Attached to linear actuators to hold it together and unfold to right itself and deploy the UAV
- 3D printed NylonX
 bulkhead secured to its
 base, successful flight

USLI

Interfaces with Ground Systems

- Adafruit RFM95W LoRa 915MHz transceivers used for radio communication between the rocket and ground station
- GPS trackers in the launch vehicle and payload communication system
- Custom PCBs designed and manufactured in house

USL

• Copper tape tuned dipole antenna

Flight Test

Vehicle Flight Test plan and Procedures

- Safety Checklists were used to prepare for the flight test.
- Safety Checklists include a list of all required tasks, required personnel, PPE warnings, and hazard warnings

Recovery Checklist		
Task	Required Personnel	
Put nomex blankets on shock cord. Operation Hazard: If blankets are not fastened correctly, parachutes could be damaged leading to the rocket free falling.		
Ensure all bodies are secured with shock cord. Operation Hazard: If a body is not connected properly, it could separate and free fall.	Launch Vehicle Lead	

t. uired

Initials Safety Officer

Safety Officer

Ground Ejection Test

- Ground Ejection Test was performed at Lake winnipesaukee and was successful
- Black Powder Charge Values:
- 4.0 g apogee primary
- 5.4 g main primary
- 4.5 g apogee secondary
- 5.7 g main secondary

Full Scale Vehicle Flight

- The subscale launch vehicle was launched on March 3rd, 2019 at Lake Winnipesaukee
- Ice was safe to launch on at 26 inches thick
- The launch vehicle was launched around 1:15p.m.
- external temperature was about 30 °F,
- wind speeds of about 9 mph towards the south-east.
- Charges detonated successfully on both Primary and Secondary Altimeters

41

Vehicle Flight Results

Failure Modes Analysis

- Premature Deployment of Main Parachute and Nose Cone
 - Shear pins sheared prematurely.
- Shearing of Lower Airframe U-Bolt Bulkhead
 - .25in bulkhead did not provide enough strength to decelerate Upper Airframe after Ο separation.
 - Separated Airframe tumbled without parachute. Damage only sustained to Blue Tube. Ο

Mitigation Plans

Securing Nose Cone

- Increase from 2 shear pins to 5. Ο
- Additional deployment tests to ensure more shear pins do not inhibit deployment. Ο
- Test to ensure shear pins can hold the full weight of the nose cone. Ο
- The team already has enough shear pins a black powder. Ο
- Time for drilling more shear pin and deployment tests is about one hour. Ο

• Securing Lower Airframe

- Increase from .25in structural bulkheads to .5in.
- Use of metal washers and larger epoxy fillets. Ο
- Motor tube and fins can be salvaged. Other necessary parts for a new lower airframe are Ο already in stock.
- Time to assemble new airframe is four days to one week. Ο

44

Payload Test plan and Procedures

• LoRa Transceiver Test

- Setup one receiver station and moved away with transmitter
- Maintained connection over half mile
- RSSI average: -80 dB

GPS Test

- GPS system setup
- Compare pulled location with actual
- Accurate within 10ft

• Servo Actuation Test

- Linear Servos actuated to open and right retention system
- Retention System Drop Test
 - Retention System dropped from 5 meters

45

Payload Flight Results

- March 3rd Launch Results
 Successful Ejection from Airframe
 Undamaged Retention System
 Undamaged Payload
- March 16th Scheduled Launch Plans
 Actuation to open and self-right
 Release UAV

Project Plan

Vehicle Status of Requirements Verification

Vehicle Requirements

Requirement	Justification	Method	Status	
There must be at least one successful full scale launch before competition.	The team will aim for the opportunity to conduct multiple full scale test launches	Testing	In Progress	The data will be
All components cut or dremeled will be sanded to ensure edges are smooth such that all pieces fit together as designed.	Every object that needs it will be sanded as needed	Inspection	In Progress	The launc for sharp
The <u>e-bay</u> will be organized such that devices and wiring are neatly placed and easy to access	The electronics bay has been designed with two compartments to keep everything organized	Inspection	In Progress	This will b rocket l
All dimensions will be checked with the rocket lead or Director of System Integration before cutting into any component	This limits the amount of errors and ensures the integrity and accuracy of the final design	Inspection	In Progress	This will b verbally Director

Reference

for these test launches available by the FRR

h vehicle will be checked or rough edges during construction

e verified visually by the ead and payload lead.

e confirmed visually and y by the rocket lead or r of System Integration

Recovery Status of Requirements Verification

Recovery Requirements

Requirement	Justification	Method	Status	R
All parachutes will be checked for correct sizes	This is to avoid errors that may affect lateral drift of descent time	Inspection	In Progress	This will be verified u simulations as wel assigne
Shock cord will be accordion folded and secured using a piece of tape such that it can easily rip apart	To absorb more shock	Inspection	In Progress	This will be verified assigned to recovery
Parachutes will be packed with nomex blankets for protection	To avoid damage due to energetics during flight	Inspection	In Progress	This will be verified members and tes
Altimeters will be triple checked for correct programming and orientation	To avoid any errors in orientation or programming that may cause the launch vehicle to, deploy parachutes incorrectly, or sustain damage	Inspection	In Progress	This will be verified rocket lead as well w ar
Kinetic Energy of each individual section shall not exceed 75 lbf-ft.	Values have been calculated to ensure this	Analysis	In Progress	Verified via c

USI

eference

using the parachute sizing in I as by the team members ed to recovery

visually by team members and can be found in section 3.4

l visually by recovery team ted during test launches.

d by the team mentor and vith multiple simulated tests nd checks

alculations and data

Payload Status of Requirements Verification

Payload Requirements

Requirement	Justification	Method	Status	
There must be at least one successful full scale test before competition	The team will aim for the opportunity to conduct multiple full scale tests	Testing	In Progress	Ī
The UAV will be organized such that all components and electronics are easily accessible	The UAV has been designed to have a minimal form factor and easy access to all parts	Inspection	In Progress	
Ensure all components of UAV are functioning as desired	The UAV must have all components working to complete beacon delivery	Testing	In Progress	
UAV and beacon will be securely mounted within the retention system	The UAV and beacon must remain undamaged during launch vehicle flight in order to successfully complete beacon delivery	Inspection	In Progress	
The UAV will have a maximum of at least twice the flight time estimated to be needed to complete the mission	Should any abnormalities in the flight of the UAV occur, sufficient time will be allowed for analysis and corrective measures applied by a human operator to aid in the mission	Analysis/testing	In Progress	

USI

Reference

The data for these tests will be available by the FRR

This will be verified visually by payload lead.

A systems check will be run to ensure all parts are in working order

This will be verified visually by payload lead

Sections 5.4 and 6.1.2 provide details regarding the processes by which components were selected to ensure this requirement was met

Milestones

November 20, 2018	Preliminary Design Review (PDR) Presentation
January 4, 2019	Critical Design Review (CDR) report, presentation a
January 7-22, 2019	CDR Presentation
March 4, 2019	Vehicle Demonstration Flight
March 4, 2019	Flight Readiness Review (FRR) report, presentation
March 8-21, 2019	FRR Presentation
March 25, 2019	Payload & Vehicle Demonstration Re-Flight
March 25, 2019	FRR Addendum
April 3, 2019	Travel to Huntsville, AL
April 4, 2019	Launch week kickoff, Launch Readiness Review
April 5, 2019	Launch week activities
April 7, 2019	Backup Launch Day
April 26, 2019	Post-Launch Assessment Review (PLAR)

Safety

- Finalized Hazard, Mitigation, and Verification
- All sections revised to be more explicit.

	Personnel Hazard Analysis				
				Probability/	
Phase	Hazard	Cause	Effect	Severity	Mitigation
Launch	Motor Misfire	Failure of igniter or damage to motor prior to launch	There is a possibility of a delayed ignition which could harm personnel if they approach the launch vehicle too soon.	DII	The motor will or handled by a cert mentor. The tean wait at least 60 se before approachi launch vehicle an follow all directio RSO.

nly be tified m will seconds ing the nd will

Verification

Motor preparation is included in the Motor Checklist. Team members have been informed of misfire safety procedures in a mandatory safety ons of the briefing and will be reminded in mandatory pre-launch safety briefings.

Logistics

- Reservations made for Embassy Suites
- Flights have been purchased
- Bussing is being planned

EMBASSY SUITES by Hilton[™]

Budget

Subscale	\$ 1,533
Fullscale	\$ 176
Payload	\$ 976
Logistics	\$13,043
Total	\$ 15,728

Funding

Required funding achieved in February, 2019

- SGA granted remaining necessary funds
- Awarded specifically to cover travel costs

Go Fund Me

- Received from Friends and Family
- Helped cover late carbon fiber purchase
- To be used for team shirts

Education Engagement

Outreach Completed:

- Educational collaboration between Robokids and Friendly House elementary schoolers.
- Engineers on the Go educational event through Pre-Collegiate **Outreach Program at WPI**
- Introduce a Girl to Engineering Day educational event through Pre-Collegiate Outreach Program at WPI
- Multiple educational outreach activities at Friendly House with middle and high school students.

Questions

